
 Datasheet of FP divisor and square root for variable precision

 Lei Li (lile@iis.ee.ethz.ch)

 08/06/2017

1. Algorithms and functions

Divisor employs the non-restoring binary divisor algorithm (NRBD)(K. Jun, and E.

E.Swartzlander, Modified non-restoring division algorithm with improved delay profile

and error correction, IEEE). And square root uses the non-restoring square root

calculation algorithm (NRSC)(Y. Li, and W. Chu, Implementation of single precision

floating square root on FPGAs,IEEE). To reduce the area overhead, they are designed

with one shared control logic and share the used iteration cells. For divisors, to improve

the accuracy, an extra MSC and adder is added (K. Jun, and E. E.Swartzlander,

Modified non-restoring division algorithm with improved delay profile and error

correction, IEEE).

Both support IEEE 754 for single precision. The three basic components in IEEE 754

are sign(S), exponent(E) and mantissa(M).

 Table 1 IEEE 754 for single precision

Precision Sign Exponent Mantissa Bias

Single 1[31] 8[30:23] 23[22:0] 127

= (−1)𝑠 × (1. 𝑀)𝐸

 Table 2 Special bit patterns in IEEE 754

 M=0 M≠0

E=0 0 Denormalized with real

exponent=1

E=255 ±∞ NaN

The IEEE 754 2008 standard supports all floating point operations. It handles all special

inputs including signaling NaN, quiet NaN,+Infinity,-Infinity, positive zero and

negative zero. Our design fully supports IEEE 754 and offers three exceptions namely

overflow(OF), underflow(UF) and division by zero(DZ). Besides, our design supports

four different rounding modes: RNE(Round to Nearest, ties to Even, 00), RTZ(Round

towards Zero, encoding as 01), RDN(Round Down, encoding as 10), RUP(Round Up,

encoding as 11).

This document is organized as follows: Chapter 2 will summarize all inputs/outputs.

Chapter 3 will introduce the architecture. Chapter 4 will address normalization. Chapter

5 will show the rounding modes. Chapter 6 will present exceptions. Chapter 7 will

provide some waveforms and latency for simulations. Chapter 8 will give the

synthesized results.

2. Inputs and Outputs

div_sqrt_top_tp is the name of our design, which can be used to divide two floating

point operands: Operand_a_DI by Operand_b_DI to produce a floating-point quotinent,

Result_DO, and compute the floating-point square root of a floating-point operand,

Operand_a_DI. The input RM_SI is a 2-bit rounding mode. A parameter

Precision_ctl_Enable_S is introduced for enabling precision control with active high.

When Precision_ctl_Enable_S=1, Precision_ctl_SI can be used to control the needed

precision. Precision_ctl_SI not only is used to control the finite state machine in

control_tp module, but also is employed to select the corresponding outputs. The values

of Precision_ctl_SI are listed in Section 7 with the corresponding latency.

Table 3 Inputs and outputs

or width direction Function

Clk_CI 1 IN Clock

Rst_RBI 1 IN Reset, active low

Div_start_SI 1 IN Start the operation of

divisor. Active high for one

cycle.

Sqrt_start_SI 1 IN Start the operation of

square root. Active high for

one cycle.

Operand_a_DI 32bits IN Div: Numerator;

Sqrt:Radicand

Operand_b_DI 32bits IN Div: Denominator

RM_SI 2 bits IN Rounding mode.

Precision_ctl_SI 5bits IN Precision control

Result_DO,

32bits OUT Div: Quotient with one

cycle ;

Sqrt: Square root of

Operand_a_DI with one

cycle

Done_SO 1 OUT Active high for one cycle

Ready_SO 1 OUT Active high. It will hold

high state until the next

Div_start_SI or

Sqrt_start_SI arrives

3. Architecture

According to radix 2 (r=2) NRBD and NRSC, n iterations are needed for n-bit operands.

For IEEE single precision, 24 iterations are needed with 23-bits mantissa and 1hidden

bit. 24 iterations can be implemented using an iteration unit with 24 cycles, or using m

iteration units with 24/m cycles. Thus, the appropriate m should be chosen.

For division, each iteration can be seen to be same and the control logic is comparatively

simple. On-the-fly conversion and an extra MSC and adder are used to produce the final

quotient. The key point of the control logic is how to store the generated quotients each

cycle and how to select the needed quotient to choose the appropriate operands at the

first iteration unit. An efficient method is to shift the quotient registers by 24/m each

cycle. Thus we can use a fixed register to choose.

The control logic of square root is more complex than that of divisor. It is because each

iteration of square root is different with different intermediate operands. We have to add

some fine-grained control. The corresponding selectors are controlled by a finite state

machine (FSM).

The employed architecture is shown in Fig.1. div_sqrt_top_tp is the top module, which

is consisted of three modules: preprocess, nrbd_nrsc_tp and fpu_norm. nrbd_nrsc_tp

contains a control logic and four iteration units. The design can be seen as three stages:

the first stage, the middle stage and last stage. To reach the target clock period of 2.8ns,

using UMC65nm process technology, the solution based on four iteration units at the

middle stage is chosen. 8(=1+24/4+1) cycles are needed for producing the final results

for single precision. The first cycle is used to store operands and generate control

signals at the first stage. The 2nd-7th cycles are used to finish 24 iterations at the middle

stage. The 8th cycle is used to normalize and round the result. The output result is then

ready at the last stage (without flip/flops). In other words, the output results can be

captured at the rising clock edge of the 8th cycle. Precision_ctl_SI is introduced to

control the needed width of mantissa for variable precision and also the needed latency,

which is shown in Section 7. Big margins are kept for the inputs and outputs, 1ns for

the input delay and 0.8ns for the output delay.

In the preprocess module, two operands are unpacked into two IEEE-754 encoded

numbers into corresponding sign bits, biased binary exponents, and mantissa. To

support denormal numbers, two leading zero detectors(LZD) are added to counter the

number of leading zeros in mantissa part of both operands. With LZD1 and LZD2, two

operands are normalizated. The resultant exponent for division can be calculated by

(Exp_a_D-Exp_b_D+Bias+LZ2-LZ1). For square root, the resultant exponent can be

computed as

Exp_a_D − LZ1 − C_BIAS

2
+ CBIAS

=
ExpaD

− LZ1

2
+ 𝐶_𝐻𝐴𝐿𝐹_𝐵𝐼𝐴𝑆 + (Exp_a_D − LZ1)%2

The result exponent and normalized operands are stored into flip/flops (Exp_norm_D

and Mant_norm_D) for next stage. The sign of final result is calculated by using sign

of both operands or one based on Div_start_SI and Sqrt_start_SI and stored into a

flip/flop. Operand detection is added to genenrate Inf_a_S, InF_b_S, Zero_a_S,

Zero_b_S, NaN_a_S and NaN_b_S for normalization of the final result. For the special

cases NaN_a_S=1 or NaN_b_S=1, the input operands are needed to store into flip/flops

for normalization. Special case control for low power is based on these signals.

Decompose

Operand_a_DI Operand_b_DI

Exp_a_D Exp_b_D

Prenormalization

Mant_a_D Mant_b_D

LZD2LZD1

Exponent operation

Exp_norm_D
Sign

operation*_dly_D

nrbd_nrsc_tp

(including flip/flops at the outputs)

Normalization

Mant*_norm_D

Rounding and renormalization

Operand detection

*_S

Compose

Result_DO

Sign_a_D Sign_b_D

Mant_z_DExp_z_D

Sign_z_D

*SO

Exp_norm_D

Exp_res_DO Mant_res_DO

Sign_res_DOMant_norm_D

Exp_a_D Exp_b_D

Fig.1 The architecture for the shared FP divisor and square root

** *_D or *_S in a block are flip/flops.

Quotient_DP

Partial remainder_DP

25-bit Adder

Carry_out Sum

1
0

CI

0

Div_enable

Msc
First*_div_b

Sqrt_enable?Sqrt_R3:Fou*div_a

Sqrt_enable?Sqrt_Q3:Fou*div_b

Sqrt_D3

Add

Msc_D

25-bit Adder

Carry_out Sum

1
0

CI

Div_enableSqrt_enable?Sqrt_R0:First*div_a

Sqrt_enable?Sqrt_Q0:First*div_b

Sqrt_D0

Sqrt_Da0

Div_start_dly

25-bit Adder

Carry_out Sum

1
0

CI

0

Div_enableSqrt_enable?Sqrt_R1:Sec*div_a

Sqrt_enable?Sqrt_Q1:Sec*div_b

Sqrt_D1

25-bit Adder

Carry_out Sum

1
0

CI

0

Div_enableSqrt_enable?Sqrt_R2:Thi*div_a

Sqrt_enable?Sqrt_Q2:Thi*div_b

Sqrt_D2

First*_sumFirst*_carry

Sec*_carry Sqrt_Da1Sec*_sum

Thi*_carry

First*_carry

Sec*_carry

Thi*_carry

Fou*_carry

Thi*_sum Sqrt_Da2

Sqrt_Da3Fou*_sum

Mant_result_prenorm_DO

Precision control

Div_enable&&Msc_for correct_DMant_result_prenorm_nocorrect_D

 Fig.2 The data flow of the shared divisor and square root in nrbd_nrsc_tp

Fig.2 shows the data flow in nrbd_nrsc_tp. A finite state machine is used to control it.

The final state of the used finite state machine is set base on the value of the

Precision_ctl_SI. Sqrt_enable_S is used to choose the operands for square root and

division.

For division, in the first iteration the left shift is not needed (Just like “the traditional

pencil-and-paper method”, when we do a division, no left shift is needed before the first

substraction. Besides, it breaks through the restriction Mant_a_D < Mant_b_D for some

divisors) and the 2’complement introduced 1 should be added as carry-in in

iteration_cell_for first by adding Div_start_dly_SI. First*div_a is chosen from

Mant_a_norm_D from preprocess or Partical_remiander_DP based on

Div_start_dly_SI. The other input *div_a of next iteration cell are from Sum of the

previous iteration cell directly, *_sum . For example, the input sec*div_a of the second

iteration cell is from first*_sum, the Sum of the first iteration cell. *div_b is chosen

from +denominator or – denominator according to the Carry_out of the previous

iteration cell *_carry. All the Carry_outs of iteration cells are stored into Quotient_DP.

The final quotient Mant_result_prenorm_D depends on Quotient_DP[MANT-1:0] and

Msc_D based on Precision_ctl_SI, shown in Fig. 2. Herein Partical_remiander_DP and

Quotient_DP are flip/flops.

Square root is more complex than division. Sqrt_D* is chosen from

Sqrt_mant_a_norm_D, 2bits for each iteration. Sqrt_R0 is chosen from ‘0 or

Partical_remiander_DP based on Sqrt_start_dly_SI. The other input Sqrt_R* of next

iteration cell are from Sum(*_sum) and D_DO(Sqrt_Da*) of the previous iteration cell

directly. Sqrt_Q* are different in each iteration with increase numbers, which are the

Carry_outs of the finished iterations. Mant_result_prenorm_D is the result of square

root before normalization.

The control signal from instruction decoder are Div_start_SI and Sqrt_start_SI. They

will be stored in flip/flops as Div_start_dly_S and Sqrt_start_dly_S, and be used to

generate Div_enable_S and Sqrt_enable_S in control module.

Fpu_norm include normalization and rounding and renormalization. The employed

schemes are shown in Section 4 and rounding in Section 5. The produced exception

flags will be given in Section 6.

4. Normalization

4.1 division

(1)For normal IEEE754 operands, the result mantissa of division should start with 1 or

01. Therefore, we just need to care about the MSB of the quotient. When the quotient

is 1.XXX, we check if the resultant exponent Exp_a_D-Exp_b_D+bias is out of the

range of exponent. When the quotient is 0.1XX, we need to shift the mantissa one bit

to the left and correct the exponent to: Exp_a_D-Exp_b_D+bias-1.

1. M1

1. M2
= 1. 𝑋𝑋𝑋 𝑜𝑟 0.1𝑋𝑋

(2)If the numerator is a denormal number,

0. M1

1. M2

The resultant exponent is Exp_a_D-Exp_b_D+bias. May be a negative number. Index

of LZD should be checked for normalization. If it is a negative number, we have to right

shift the mantissa by Index of LZD to check if the resultant exponent (E + Index of

LZD)is negative. If it is negative, it is overflow.

(3)If the denominator is a denormal number,

1. M1

0. M2
> 1

 It is analyzed above.

(4)If these two operands are denormal numbers,

0. M1

0. M2

 We should detect the first ones of these operands. It is the reason that we added two

LZDs before operation.

Solution: If the hidden bit is 0, we should detect the first one of operands and left shift

these two operands to normal mantissas. Thus we just care about exponent. Exponent

= Exp_a_D-Exp_b_D+Bias+LZ2-LZ1, can be positive or negative. The leading one of

the quotient should be detected for normalization.

(5) Other cases

If 1=<E<=254, it is a normal result, return E and M;

If E=0 and M≠0, it is a denormal number, return >> (M) and the adjusted E;

If E is negative, the numbers cannot be represented. UF is signaled and return

E=0,M=0 (If so,it is all right for testbench. If not, cannot pass the check);

If E=255 and M≠0, NaN is signaled and return qNaN;

If E>255, OF is signaled and return E=255, M=0.

(6)Special cases

Table 4 IEEE 754-2008 specification for /x y

/x y y

+0 (sub)normal +∞ NaN

x
+0 qNaN +0 +0 qNaN

(sub)normal +∞
(/)x y

+0 qNaN

+∞ +∞ +∞ qNaN qNaN

NaN qNaN qNaN qNaN qNaN

“Except when otherwise stated, if the result of a floating-point operation is NaN, it

is the canonical NaN. The canonical NaN has a positive sign and all significand bits

clear except the MSB, a.k.a. the quiet bit. For single-precision floating-point, this

corresponds to the pattern 0x7fc00000.” Risc-spec V2.1 says.

Table 5 Special cases for division

Division operation return

1 a/NaN qNaN*

2 a/Inf 0, the sign depending on

the two operands

3 a/0 Inf, the sign depending on

the two operands

4 0/b 0, the sign depending on

the two operands

5 Inf/b Inf, the sign depending on

the two operands

6 NaN/b qNaN

7 0/Inf 0, the sign depending on

the two operands

8 Inf/0 Inf, the sign depending on

the two operands

9 0/0 qNaN

10 Inf/Inf qNaN

*qNaN=0x7fc00000

4.2 square root

(1) The operand is a normal number

For normal IEEE754 operands, the result mantissa of square root should start with 1.

Thus, we can check the final exponent. The 1.M will be left shifted one or zero-bit so

that the new exponent e′ makes e′ − 127 even. The shifted fraction will be

1X.XXX or 01.XXX. The result value will be 1.XXX. The resultant exponent can be

computed as

e − 127

2
+ 127 =

e

2
+ 63 + 𝑒%2

(2) The operand is a denormal number

If the input operand is a denormal number, we can left shift like division. e can be a

negative number. If e is even, it needs left shift 1- bit more.

(3)Other cases

 Same to division.

(4) Special cases

 Table 6 IEEE 754-2008 specification for square root

Operand x +0 +∞ -0 Less than

zero

NaN

Result r +0 +∞ -0 qNaN qNaN

Table 7 Special cases for square root

Square root operands

1 +0 +0

2 +NaN qNaN

3 +Inf +Inf

4 -0 -0

5* -a qNaN

* can not be covered by division

5. Rounding

The design supports four different rounding modes: RNE(Round to Nearest, ties to

Even, 00), RTZ(Round towards Zero, encoding as 01),RDN(Round Down, encoding as

10),RUP(Round Up, encoding as 11).

 Table 8 Rounding modes

Mode Code

RNE 00

RTZ 01

RDN 10

RUP 11

6. Exceptions

The design supports three exceptions namely overflow(OF), underflow(UF) and

division by zero(DZ).

 Div_zero_SO can be given by the LZD2 with resultant sign directly. Returns infinity

(positive or negative) as result

 Exp_OF_SO is signaled if the exact result has an exponent that cannot be represented

in the format. Returns infinity (positive or negative) as result.

 Exp_UF_SO is signaled when the result is denormal and rounded.

7. Waveforms and latency

 The design was tested and it works well. Fig.3-9 present some waveforms.

Div_start_SI or Sqrt_start_SI is coming with the operands when Ready_SO=1. When

Done_SO=1, the Result_DO is ready. The latency depends on the Precision_ctl_SI.

Table 9 Latency

Precision_ctl_SI Latency Max loss of mantissa

8-11 5 2**(23- Precision_ctl_SI)

with MSC 12-15 6

16-19 7

20-23 8

23(single precision) 8 1

Special cases* 2 -

 * No matter which value is Precision_ctl_SI set, the results will be ready at the third

clock edge, which is shown in Fig. 5, Fig. 8 and Fig. 9. This feature has been removed

in our transprecision design.

(1)Precision_ctl_SI=20, Latency=8 clock cycles

Fig.3 The waveform at the beginning with all inputs delayed by half of clock period

Fig.4 The waveform of division and square root

Fig.5 The waveform of special cases

(2)Precision_ctl_SI=10, Latency=5 clock cycles

Fig.6 The waveform at the beginning with all inputs delayed by half of clock period

Fig.7 The waveform of division and square root

Fig.8 The waveform of special cases

(3)Precision_ctl_SI=10, Latency=2 clock cycles just for testing special cases

Fig.9 The waveform of special cases

8. Synthesized results

UMC65nm process technology was used for synthesis.

Tool: Design Compiler

Operating Conditions: uk65lscllmvbbl_108c125_wc

Library: uk65lscllmvbbl_108c125_wc

Input_delay :1ns

Output_delay:1ns for the original design, 0.8ns for others

Fig.10 The sweep synthesized results

**The area of a gate equivalent is 1.44um2

** The direct synthesis will produce 10167um2@2.8ns for the original design with

the same constraint, about 7KGE.

9 Power estimation

UMC65nm process technology was used for power estimation.

Tool: Primetime

Operating Conditions: uk65lscllmvbbl_108c125_wc

Library: uk65lscllmvbbl_108c125_wc

Estimation Conditions: Postsyn without spef.

SDC: from Design Compiler with the clock period of 2.8ns.

Fig.11 plots the results for 23 special cases (23 vectors). 23 special cases cover all the

list special cases in Section 4, which is defined in testbench. We just estimate the cases

of latency=2 and 8 clock cycles. From Fig.1, it can be concluded that the used technique

is very efficient in low power for special cases. When latency = 8 clock cycles, it can

achieve more than 40% energy savings. The results of special cases will be ready after

2 clock cycles with low power. We can compare the needed energy @latency=2 clock

cycles and @ latency=8 clock cycles. For transprecision with low power, the ratio of

the needed energy @latency=2 clock cycles and @ latency=8 clock cycles is 27%. The

power reduces with the increase of latency. This is because the needed energy for an

operation can be seen to be constant, ignoring the leakage power and other logic. Why

not reduce rapidly? It is because that the FSM used for control is wake up @ latency=8

clock cycles.

mailto:10167um2@2.8ns

Fig.11 Special cases

Fig.12 plots the results for 1000 vectors including 23 special vectors. Low power

control will introduce14% more power for single precision. Lower power control will

introduce about 4% more power for transprecision. Reducing the precision can reduce

the needed energy. The needed energy of the precision with 5-cycle latecncy is about

61% of that of the precision with 8-cycle latency for an operation.

Fig.12 All cases

